Phase Stability with Cubic Equations of State: A Global Optimization Approach

نویسنده

  • S. T. Harding
چکیده

Calculation of phase and chemical equilibria is of fundamental importance for the design and simulation of chemical processes. Methods that minimize the Gibbs free energy provide equilibrium solutions that are only candidates for the true equilibrium solution. This is because the number and type of phases must be assumed before the Gibbs energy minimization problem can be formulated. The tangent plane stability criterion is a means of determining the stability of a candidate equilibrium solution. The Gibbs energy minimization problem and the tangent plane stability problem are very challenging due to the highly nonlinear thermodynamic functions that are used. In this work the goal is to develop a global optimization approach for the tangent plane stability problem that (i) provides a theoretical guarantee about the stability of the candidate equilibrium solution and (ii) is computationally eecient. Cubic equations of state are used in this approach due to their ability to accurately predict the behavior of nonideal vapor and liquid phases across a broad range of pressures. The mathematical form of the stability problem is analyzed and nonlinear functions with special structure are identiied. These special structures are exploited to achieve faster convergence of the algorithm. The proposed approach has been applied to the SRK, Peng-Robinson, and van der Waals cubic equations of state and can address a variety of mixing rules. Results for several example problems, including an eight component problem, are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Optimization of Stacking Sequence in a Laminated Cylindrical Shell Using Differential Quadrature Method

Based on 3-D elasticity approach, differential quadrature method (DQM) in axial direction is adopted along with Globalized Nelder–Mead (GNM) algorithm to optimize the stacking sequence of a laminated cylindrical shell. The anisotropic cylindrical shell has finite length with simply supported boundary conditions. The elasticity approach, combining the state space method and DQM is used to obtain...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

PHASE STABILITY AND CONDUCTIVITY OF δ-Bi2O3 WITH MIXTURE OF YTTRIUM AND YTTERBIUM OXIDES

In this research Bi2O3 was doped with mixtures of 8, 10, 12 and 18 mol % of Y2O3 and Yb2O3 to stabilizing the δ-Bi2O3 phase using solid state reaction technique. Experimental samples were fabricated by isostatic pressing and sintering at 850 °C for 24 h. X-ray diffraction analysis detected cubic phase (δ-Bi2O3) as the sole stable crystalline phase in samples including 12 and 18 mol % of Y2O3 an...

متن کامل

Reliable Phase Stability Analysis for Cubic Equation of State Models

The reliable prediction of phase stability is a challenging computational problem in chemical process simulation, optimization and design. The phase stability problem can be formulated either as a minimization problem or as an equivalent nonlinear equation solving problem. Conventional solution methods are initialization dependent, and may fail by converging to trivial or nonphysical solutions ...

متن کامل

Reliable Computation of Phase Stability Using Interval Analysis: Cubic Equation of State Models

The reliable prediction of phase stability is a challenging computational problem in chemical process simulation, optimization and design. The phase stability problem can be formulated either as a minimization problem or as an equivalent nonlinear equation solving problem. Conventional solution methods are initialization dependent, and may fail by converging to trivial or non-physical solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000